Northridge Earthquake

California January 17th 1994 (4:30AM PST) M 6.7 34° 12.80' N, 118° 32.22' W 20 miles west-northwest of Los Angeles 1 mile south-southwest of Northridge Hypocenter: 18km

Southern California Fault Lines

Ē

Nature of the Fault

Blind thrust fault

The 1994 Northridge earthquake was caused by a type of fault called a blind thrust fault.

A thrust fault, also called a reverse fault, is one in which the upper side of the fault (the "hanging wall") appears to have been pushed upward and over the adjacent ground (the "footwall"). This is the opposite of a gravity, or normal, fault. A blind thrust fault is a thrust fault that does not rupture all the way up to the surface so there is no evidence of it on the ground. It is "buried" under the uppermost layers of rock in the crust, which may be folded over one another, hiding the fault.

Thrust Fault

Blind thrust fault

AKA: buried or concealed fault

-One side moves upward over the other -The fault doesn't break the ground surface -Difficult to map

-Several uplifts found, but no evidence of ground rupture

Felt Reports

INTENSITY	1	11-111	IV	v	VI	VII	VIII	IX	X+
SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy

- Thousands of aftershocks
- Largest: M 5.9 occurred 1min. after main shock
- ~60 deaths and ~9000 injured
- \$40-50 billion damage

Afterwards...

- It became necessary to (1) learn more about various aspects of earthquake ground motions and building response during earthquakes, and (2) develop procedures and technologies that enable structural engineers to predict with reasonable reliability the performance of buildings subjected to various levels and types of earthquake ground motions.
- Significant changes in building codes and standards were made.